求封闭区域(多边形如图1)ABCD的面积 ,其具体方法为:
(1)对封闭区域(多边形)的界址点连续编号(顺时针或逆时针)ABCD,提取各界址点的高斯平面坐标A(X1,Y1),B(X2,Y2),C(X3,Y3),D(X4,Y4);
(2)利用高斯投影反解变换模型公式(3),将高斯平面坐标换算为相应椭球的大地坐标A(B1,L1),B(B2,L2),C(B3,L3),D(B4,L4);
(3)任意给定一经线L0(如L0=60°),这样多边形ABCD的各边AB、BC、CD、DA与L0就围成了4个梯形图块(ABB1A1、BCC1B1、CDD1C1、DAA1D1);
(4)由于在椭球面上同一经差随着纬度升高,梯形图块的面积逐渐减小,而同一纬差上经差梯形图块的面积相等,所以,将梯形图块ABB1A1按纬差分割成许多个小梯形图块AEiFiA1,用公式(2)计算出各小梯形图块AEiFiA1的面积Si,然后累加Si就得到梯形图块ABB1A1的面积,同理,依次计算出梯形图块BCC1B1、CDD1C1、DAA1D1的面积(注:用公式(2)计算面积时,B1、B2分别取沿界址点编号方向的前一个、后一个界址点的大地纬度,ΔL为沿界址点编号方向的前一个、后一个界址点的大地经度的平均值与L0的差);
(5)多边形ABCD的面积就等于4个梯形图块(ABB1A1、BCC1B1、CDD1C1、DAA1D1)面积的代数和。
图1 椭球面上任意多边形计算面积
则任意多边形ABCD的面积P为:
P=ABCD= BCC1B1+ CDD1C1+ DAA1D1- ABB1A1
2、计算要求
① 利用图形坐标点将高斯坐标系下的几何图形反算投影到大地坐标系,进行投影变换。
② 任意指定一条经线L0,从选定多边形几何形状的起始点开始,沿顺时针方向依次计算相邻两点构成的线段,以及两点到指定经线的平行线构成的梯形面积。将该梯形沿纬度变化方向(Y轴)进行切割,至少需切割为2个部分。
③ 计算过程中应顺同一方向依坐标点逐个计算相邻两点连线与任意经线构成的梯形面积,坐标点不得有遗漏。若多边形包含内多边形(洞),则该多边形面积为外多边形面积减去所有内多边形面积之和。
④ 计算所有梯形面积的代数和即为该多边形的面积。
七、算法伪代码描述
为了确保编程使用的参数、算法一致,保证不同软件计算的椭球面积一致,我们用算法伪代码描述的方法对编程进行统一,在利用计算机编制椭球面积计算软件时,计算参数与计算顺序应严格按照以下代码执行。